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Abstract A chemosensor, 2,2′-(1,4-phenylenedivinylene)-
bis-8-acetoxyquinoline (1), its fluorescent sensing behavior
toward representative alkali ions (Na+, K+), alkaline earth
ions (Mg2+, Ca2+), and transition-metal ions (Ni2+, Cu2+,
Zn2+, Hg2+, Pb2+, Cd2+) was intensively investigated. The
compound (1) exhibited pronounced Hg2+ selective on–off-
type fluoroionophoric properties among the representative
ions in DMF/ethanol (1:9, v/v) solution. Moreover, the
highly Hg2+-selective fluorescence quenching property
in conjunction with a visible colorimetric change from
colorless to light yellow can be observed, leading to
potential fabrication of both “naked-eye” and fluorescent
detection of Hg2+.

Keywords Fluorescent sensor . Hg2+ selective . Naked-eye
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Introduction

In recent years, there has been an upsurge of interest
in the development of fluorescent sensors for the

detection of heavy metal ions that are of concerning
in toxicology and environmental science [1–5]. Such
sensors based on ion-induced changes in fluorescence
appear to be particularly attractive due to their simplic-
ity, high sensitivity, high selectivity and instantaneous
response [6]. Therefore, numerous studies focus on the
design, synthesis of fluorescent chemosensors and the
analysis of transition- or heavy-metal ions such as Hg2+,
Cu2+, Pb2+ and so on [7–13]. Among them, mercury is
notorious as an environmental toxin which causes
severe neurotoxic, genotoxic, and immunotoxic effects
and thus poses severe risk for human beings and other
organisms [14, 15]. Mercury contamination of ecosys-
tems occurs through a variety of natural and anthropogenic
sources, including oceanic and volcanic emissions,
solid waste incineration, and the combustion of fossil
fuels [16, 17]. Many current techniques for mercury

spectrometry require expensive and sophisticated
instrumentation and complicated sample preparation
processes [17]. Fluorescence detection with Hg2+-responsive
chemosensors offers a promising approach for simple
and rapid tracking of mercury ions in biological, tox-
icological, and environmental samples [18–20]. Many
efforts have been made to develop the chemosensors
for the selective and efficient detection of mercury ions
[7, 8, 21–23].

Design of chemosensors by incorporation of fluoro-
phores can be based on either fluorescent ON–OFF
[24–30] or OFF–ON [31–33] phenomenon. Many of
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screenings such as atomic absorption/emission spectro-
scopy, and selective cold vapor atomic fluorescence



the reported fluorescent sensors for Hg2+ that operate
through fluorescence quenching are often hampered by
interference from chemically related cations like Cu2+

which also causes nonspecific fluorescent quenching
[34]. Therefore, there is a great need for such chemo-
sensors, which have high sensitivity and selectivity for
detecting and monitoring Hg2+ by employing a simple
response.

A few works demonstrated ideal selectivity and sen-
sitivity for Hg2+. For example, several Hg2+ sensors
that exhibit fluorescence turn-on have been revealed
which include a biaryl pyridine species linked to an
argogel resin [35] and xanthene-based MF1 [20]. Other
reported Hg2+ detection strategies relying on fluores-
cence output involve nanoparticles [36], polymers [37],
and biomolecules [38, 39]. Many colorimetric Hg2+

indicators have also been documented [40, 41]. Never-
theless, the syntheses of these fluorophores are found
to be relatively complicated or low-yielding. So, the
development of easy-access and new kinds of Hg2+

fluorescent sensors is still quite important. The 8-
Hydroxyquinolin platform has been receiving much
attention in the design of efficient fluorophores because
of the appreciable change in fluorescence upon metal
binding [42]. 8-Hydroxyquinolin has been used to con-
struct many unique ionophoric systems for the recogni-
tion of important metal ions, such as Zn2+, Al3+, Fe3+,
and Hg2+, as well as effective light-emitting devices
[43] due to its unique molecular structure and proper-
ties, for instance, an extra binding site or signaling unit
can be introduced at some well-defined periphery on the
appending alkyl group [42].

Herein, we describe a simple fluorescent Hg2+ sensor, 2,2′-
(1,4-phenylenedivinylene)bis-8-acetoxyquinoline (1) based
on the 8-Hydroxyquinolin platform. The sensor, as depicted
in Scheme 1, is selective for Hg2+ over some representative
metal and transition-metal ions, and exhibits fluorescence
quenching immediately following Hg2+ coordination in
DMF/ethanol solution. More importantly, the highly Hg2+-
selective fluorescence quenching property in conjunction with
a visible colorimetric change from colorless to light yellow
can be observed, leading to potential fabrication of both
“naked-eye” and fluorescent detection of Hg2+.
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Fig. 1 Fluorescence response of (1) in DMF/ethanol solution (1:9, v/v)
in the presence of increasing concentration of [Hg2+] (0, 0.10, 0.25, 0.50,
0.75, 1.0, 1.5, 2.0, 2.5, 3.75 and 5.0×10−5 M). [1]01.0×10−5 M. Inset
shows variation of fluorescence intensity against equivalents of Hg2+
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Scheme 1 Synthesis of
fluorescent sensor (1) and (2)
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Data Treatment and Discussion

First, we attempted to determine the selective fluoroio-
nophoric properties of 2,2′-(1,4-phenylenedivinylene)bis-
8-acetoxyquinoline (1) toward representative alkali (Na+,
K+), alkaline earth (Mg2+, Ca2+), and transition-metal
ions (Ni2+, Cu2+, Zn2+, Hg2+, Pb2+, Cd2+). After sys-
tematical insight into selective signaling toward a spe-
cific target metal ion, we found that DMF/ethanol
mixing solution was relatively well optimized sensing
media. Therefore, all the fluorescence measurements
were carried out in a DMF/ethanol solution (1:9, v/v),
where the most pronounced selectivity toward Hg2+ ions
was realized.

Compound (1) exhibited a characteristic fluorescence
emission band at 445 nm. However, upon the addition
of Hg2+ ion, the remarkable fluorescence quenching was
observed instantaneously with an increase of the con-
centration of Hg2+ in DMF/ethanol (1:9, v/v), which
was shown in Fig. 1. The maximum quenching of
fluorescence was reached when the Hg2+ concentration

was up to 5 equiv (1 equiv is 1.0×10−5 M), (see the
insert of Fig. 1). We need to note that when the con-
centration of compound (1) was 1.0×10−6 mol/L, the
quenching was also observed when Hg2+ was added
into the (1) solution of DMF/ethanol, but due to the
lower concentration of compound (1), fluorescence
intensity is not enough strong, therefore we chose the
concentration of (1) at 1.0×10−5 mol/L through this
study. The result suggests that the detection limit of
compound (1) is about 1.0×10−6 mol/L. Moreover, the
Hg2+ sensing and the concomitant absorption changes
were clearly visible to the naked eye, as can be seen in
the photograph (Fig. 2) where the colorless solution of
(1) became light yellow when the concentration of Hg2+

ions reached up to 1.0×10−5 M. It was also clear from
Fig. 2 that the addition of other metal ions (1.0×
10−5 M) studied to the DMF/ethanol (1:9, v/v) solution
of (1), however did not change the solution color
clearly. These interesting phenomena proved that com-
pound (1) can serve as a “naked eye” chemosensor
specific for Hg2+.

Fig. 3 Fluorescence responses
of (1) at 445 nm in the presence
of different metal ions: Li+,
Na+, K+, Mg2+, Ca2+, Cr2+,
Mn2+, Co2+, Ni2+, Cu2+, Zn2+,
Cd2+, Hg2+, Pb2+, Ag+ and
Al3+ (as their ClO4

− salts) in
DMF/ethanol (1:9, v/v). [1]0
1.0×10−5 M, [Mn+]05.0×
10−5 M

Fig. 2 Photograph of
compound (1) with the addition
of different metal ions
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In addition, the fluorescence response of (1) to other
metal ions was also investigated (see Fig. 3). Although
the fluorescence of (1) at 445 nm was obviously
quenched by adding Hg2+, no significant spectral
changes took place in the presence of 5 equiv each of
alkali ions (Na+, K+), alkaline earth ions (Mg2+, Ca2+),
and transition-metal ions (Ni2+, Cu2+, Zn2+, Pb2+ and
Cd2+). Of practical significance was that even 50 equiv
(5.0×10−4 M) each of these metal ions did not interfere
in the sensing of Hg2+, as shown in Fig. 4. Figure 5
showed the photograph of compound (1) in DMF/ethanol
(1:9, v/v) solution taken under the fluorescence light.
It was obvious that the appearance of both alkali ions
(Na+, K+), alkaline earth ions (Mg2+, Ca2+), and
transition-metal ions (Ni2+, Cu2+, Zn2+, Pb2+ and Cd2+)
did not quench the fluorescence of (1), except Hg2+ ion.
Moreover, Fig. 5 also showed that the presence of other

metal ions did not interfere the quenching of the ligand
(1) due to Hg2+. These results suggested that the com-
pound (1) had a high selectivity toward Hg2+ among
various metal ions.

The UV–vis absorption spectrum of (1), recorded in
DMF/ethanol (1:9, v/v) solution, exhibited a strong
band at 380 nm (Fig. 6). A weak band at 308 nm
was also observed, which was assigned to the π-π*
transitions of the 8-quinolinoloxy groups.20 Upon pro-
gressive addition of Hg2+ ions to a solution of (1) in
DMF/ethanol (1:9, v/v), The absorbance of ligand at
380 nm gradually decreased in intensity with the con-
comitant decrease of band at 308 nm, whereas a new
band at 445 nm appeared and its absorbance gradually
increased with the addition of Hg2+ (Fig. 6). The
quenching mechanism could be explained as being
caused by the charge transition from the large conjugative

Fig. 5 Photograph of compound (1) in DMF/ethanol (1:9, v/v) solution in the presence of various metal ions under the fluorescence light.
[1]01.0×10−5 M, [Mn+]05.0×10−4 M

Fig. 4 Fluorescence responses
of (1) at 445 nm upon the
addition of 5 equiv of Hg2+ in
the presence of 50 equiv of
background metal ions (5.0×
10−4 M). [1]01.0×10−5 M
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ligand to the Hg2+ (LMCT). As shown in Fig. 6, the
absorption band showed a red shift and overlapped
with emission band in the region of 400–500 nm,
which reflects that the electron was dispersed due to
the presence of Hg2+. To confirm our conclusion, the
compound (2), a relatively smaller conjugative ligand
but with a similar molecular structure was prepared.
Compared with (1), the smaller conjugative compound
(2) has not shown obvious response to most metal ions
including Hg2+ (Fig. 7). In addition, Job’s plot in the
insert of Fig. 1 shows that the fluorescence intensity
reached platform when the concentration of compound

(1) is 1 equiv of Hg2+ (1.0×10−5 M), suggesting that a
1:1 binding of ligand to Hg2+.

Moreover, we also found that these metal ions did
not interfere in the sensing of Hg2+, and the results of
the competition experiments are shown in Fig. 4. It is
worthy noting that 1 still shows highly selective fluo-
rescence quenching toward Hg2+ over other metal ions,
probably because of very selective and strong binding
of the former with 1. The quenching mechanism can be
explained as being caused by the electron transfer from
the quinoline nitrogen to the Hg2+.

Conclusion

In conclusion, a 8-Hydroxyquinolin derivative, 2,2′-
(1,4-phenylenedivinylene) -bis-8-acetoxyquinoline (1),
has been facilely synthesized which exhibited a high
affinity toward Hg2+ over alkali metal ions (Na+, K+),
alkaline earth metal ions (Mg2+, Ca2+), and transition-
metal ions (Ni2+, Cu2+, Zn2+, Pb2+, Cd2+). The highly
selective fluorescence quenching behavior of the fluo-
rescent sensor 1 toward Hg2+, its sensing ability in
DMF/ethanol (1:9, v/v) solution systems suggested that
it can be used as an ON–OFF fluorescent sensor
toward Hg2+ ion. The fluorescent sensor 1 exhibited
no affinity to other metal ions, thereby reducing the
possibility of interference by these metal ions. A visi-
ble colorimetric change from colorless to light yellow
can be observed only in the presence of Hg2+ ion,
revealing the potential fabrication of both “naked-eye”
and fluorescent detection of Hg2+.

Fig. 7 Fluorescence responses
of (2) at 405 nm in the presence
of different metal ions: Li+,
Na+, K+, Mg2+, Ca2+, Cr2+, Mn2
+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+,
Hg2+, Pb2+, Ag+ and Al3+ (as
their ClO4

− salts) in DMF/
ethanol (1:9, v/v). [2]01.0×
10−5 M, [Mn+]05.0×10−4 M
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Fig. 6 UV–vis spectra of (1) in DMF/ethanol (1:9, v/v) in the presence
of increasing concentration of Hg2+ (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 eq.).
[1]01.0×10−5 M
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